Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2292459

ABSTRACT

The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.


Subject(s)
Coronavirus Infections , Coronavirus , Orthomyxoviridae , Humans , Viral Fusion Proteins/metabolism , Coronavirus/metabolism , Hemagglutinins/metabolism , Spike Glycoprotein, Coronavirus/genetics , Membrane Fusion , Orthomyxoviridae/metabolism , Virus Internalization
2.
Antiviral Res ; 212: 105575, 2023 04.
Article in English | MEDLINE | ID: covidwho-2281027

ABSTRACT

With the resurgence of the coronavirus pandemic, the repositioning of FDA-approved drugs against coronovirus and finding alternative strategies for antiviral therapy are both important. We previously identified the viral lipid envelope as a potential target for the prevention and treatment of SARS-CoV-2 infection with plant alkaloids (Shekunov et al., 2021). Here, we investigated the effects of eleven cyclic lipopeptides (CLPs), including well-known antifungal and antibacterial compounds, on the liposome fusion triggered by calcium, polyethylene glycol 8000, and a fragment of SARS-CoV-2 fusion peptide (816-827) by calcein release assays. Differential scanning microcalorimetry of the gel-to-liquid-crystalline and lamellar-to-inverted hexagonal phase transitions and confocal fluorescence microscopy demonstrated the relation of the fusion inhibitory effects of CLPs to alterations in lipid packing, membrane curvature stress and domain organization. The antiviral effects of CLPs were evaluated in an in vitro Vero-based cell model, and aculeacin A, anidulafugin, iturin A, and mycosubtilin attenuated the cytopathogenicity of SARS-CoV-2 without specific toxicity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Membrane Fusion , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Anti-Retroviral Agents/pharmacology , Lipopeptides/pharmacology
3.
Pharm Biol ; 60(1): 2049-2087, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2097124

ABSTRACT

CONTEXT: The emergence of zoonotic viruses in the last decades culminating with COVID-19 and challenges posed by the resistance of RNA viruses to antiviral drugs requires the development of new antiviral drugs. OBJECTIVE: This review identifies natural products isolated from Asian and Pacific medicinal plants with in vitro and in vivo antiviral activity towards RNA viruses and analyses their distribution, molecular weights, solubility and modes of action. MATERIALS AND METHODS: All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem and library search from 1961 to 2022. RESULTS: Out of about 350 molecules identified, 43 phenolics, 31 alkaloids, and 28 terpenes were very strongly active against at least one type of RNA virus. These natural products are mainly planar and amphiphilic, with a molecular mass between 200 and 400 g/mol and target viral genome replication. Hydroxytyrosol, silvestrol, lycorine, tylophorine and 12-O-tetradecanoylphorbol 13-acetate with IC50 below 0.01 µg/mL and selectivity index (S.I.) above 100 have the potential to be used for the development of anti-RNA virus leads. DISCUSSION AND CONCLUSIONS: The medicinal plants of Asia and the Pacific are a rich source of natural products with the potential to be developed as lead for the treatment of RNA viral infections.


Subject(s)
Biological Products , COVID-19 , Plants, Medicinal , RNA Viruses , Biological Products/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
4.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1934176

ABSTRACT

A series of pyrimidine conjugates containing a fragment of racemic 7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine and its (S)-enantiomer attached via a 6-aminohexanoyl fragment were synthesized by the reaction of nucleophilic substitution of chlorine in various chloropyrimidines. The structures of the synthesized compounds were confirmed by 1H, 19F, and 13C NMR spectral data. Enantiomeric purity of optically active derivatives was confirmed by chiral HPLC. Antiviral evaluation of the synthesized compounds has shown that the replacement of purine with a pyrimidine fragment leads to a decrease in the anti-herpesvirus activity compared to the lead compound, purine conjugate. The studied compounds did not exhibit significant activity against influenza A (H1N1) virus.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Antiviral Agents/chemistry , Benzoxazines/chemistry , Purines , Pyrimidines/pharmacology
5.
J Antibiot (Tokyo) ; 75(5): 258-267, 2022 05.
Article in English | MEDLINE | ID: covidwho-1728737

ABSTRACT

A series of lupane-, oleanane- and dammarane-based triterpenoids with 3ß-amino, A-ring azepano- and 3,4-seco-fragments has been synthesized and evaluated for antiviral activity against influenza A(H1N1) virus. It was found that azepanodipterocarpol 8 and 3ß-amino-28-oxoallobetulin 11 showed antiviral activity with IC50 1.1 and 2.6 µg ml-1, and selectivity index of 19 and 10, respectively.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Triterpenes , Antiviral Agents/pharmacology , Humans , Influenza, Human/drug therapy , Oleanolic Acid/analogs & derivatives , Triterpenes/pharmacology
6.
Biomedicines ; 9(10)2021 Oct 10.
Article in English | MEDLINE | ID: covidwho-1463552

ABSTRACT

To rationalize the antiviral actions of plant alkaloids, the ability of 20 compounds to inhibit calcium-mediated fusion of lipid vesicles composed of phosphatidylglycerol and cholesterol was investigated using the calcein release assay and dynamic light scattering. Piperine, tabersonine, hordenine, lupinine, quinine, and 3-isobutyl-1-methylxanthine demonstrated the most potent effects (inhibition index greater than 50%). The introduction of phosphatidylcholine into the phosphatidylglycerol/cholesterol mixture led to significant changes in quinine, hordenine, and 3-isobutyl-1-methylxanthine efficiency. Comparison of the fusion inhibitory ability of the tested alkaloids, and the results of the measurements of alkaloid-induced alterations in the physical properties of model membranes indicated a potent relationship between a decrease in the cooperativity of the phase transition of lipids and the ability of alkaloids to prevent calcium-mediated vesicle fusion. In order to use this knowledge to combat the novel coronavirus pandemic, the ability of the most effective compounds to suppress membrane fusion induced by fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 fusion peptides was studied using the calcein release assay and confocal fluorescence microscopy. Piperine was shown to inhibit vesicle fusion mediated by both coronavirus peptides. Moreover, piperine was shown to significantly reduce the titer of SARS-CoV2 progeny in vitro in Vero cells when used in non-toxic concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL